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1 The equationx3 + px + q = 0 has a repeated root. Prove that 4p3 + 27q2 = 0. [5]

2 The position vectors of pointsA, B, C, relative to the originO, area, b, c, where

a = 3i+ 2j− k, b = 4i− 3j+ 2k, c = 3i − j − k.

Find a × b and deduce the area of the triangleOAB. [3]

Hence find the volume of the tetrahedronOABC, given that the volume of a tetrahedron is
1
3 × area of base× perpendicular height. [2]

3 Prove by mathematical induction that, for all positive integersn,

dn

dxn (ex sinx) = 2
1
2nex sin(x + 1

4nπ). [7]

4 The linear transformation T :>4 → >4 is represented by the matrixM, where

M =


3 4 2 5
6 7 5 8
9 9 9 9

15 16 14 17

 .

Find

(i) the rank ofM and a basis for the range space of T, [4]

(ii) a basis for the null space of T. [3]

5 The pointP (2, 1) lies on the curve with equation

x3 − 2y3 = 3xy.

Find

(i) the value of
dy
dx

at P, [3]

(ii) the value of
d2y

dx2
at P. [4]

6 Let In = ã 1

0
xn(1− x)1

2 dx, for n ≥ 0. Show that, forn ≥ 1,

(3+ 2n)In = 2nIn−1. [5]

Hence find the exact value ofI3. [3]
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7 The curveC has equationy = x2 + px + 1
x − 2

, wherep is a constant. Given thatC has two asymptotes,

find the equation of each asymptote. [3]

Find the set of values ofp for which C has two distinct turning points. [5]

SketchC in the casep = −1. Your sketch should indicate the coordinates of any intersections with the
axes, but need not show the coordinates of any turning points. [3]

8 The vectore is an eigenvector of the matrixA, with corresponding eigenvalueλ , and is also an
eigenvector of the matrixB, with corresponding eigenvalueµ. Show thate is an eigenvector of the
matrix AB with corresponding eigenvalueλµ. [2]

State the eigenvalues of the matrixC, where

C = −1 −1 3
0 1 2
0 0 2

 ,

and find corresponding eigenvectors. [4]

Show that(1
6
3
) is an eigenvector of the matrixD, where

D =  1 −1 1
−6 −3 4
−9 −3 7

 ,

and state the corresponding eigenvalue. [3]

Hence state an eigenvector of the matrixCD and give the corresponding eigenvalue. [2]

9 The curveC has equationy = 1
2(ex + e−x) for 0 ≤ x ≤ ln 5. Find

(i) the mean value ofy with respect tox over the interval 0≤ x ≤ ln 5, [4]

(ii) the arc length ofC, [4]

(iii) the surface area generated whenC is rotated through 2π radians about thex-axis. [4]

10 The curveC has polar equationr = 3+ 2 cosθ, for −π < θ ≤ π. The straight linel has polar equation
r cosθ = 2. Sketch bothC andl on a single diagram. [3]

Find the polar coordinates of the points of intersection ofC andl. [4]

The regionR is enclosed byC andl, and contains the pole. Find the area ofR. [6]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

Let ω = cos1
5π + i sin 1

5π. Show thatω5 + 1 = 0 and deduce that

ω4 − ω3 + ω2 − ω = −1. [2]

Show further that

ω − ω4 = 2 cos1
5π and ω3 − ω2 = 2 cos3

5π. [4]

Hence find the values of

cos1
5π + cos3

5π and cos15π cos3
5π. [4]

Find a quadratic equation having roots cos1
5π and cos35π and deduce the exact value of cos1

5π. [4]

OR

Given that

x2 d2y

dx2
+ 4x(1+ x)dy

dx
+ 2(1+ 4x + 2x2)y = 8x2

and thatx2y = ß, show that

d2ß
dx2

+ 4
dß
dx

+ 4ß = 8x2. [4]

Find the general solution fory in terms ofx. [8]

Describe the behaviour ofy asx → ∞. [2]
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